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A SURVEY OF RESULTS

In this final technical report we will bricfly comment upoa our research
accomplishments sponsored by the Grant AFOSR-86-026. Muck of our work during this
period was concerned with various aspects of estimuation theory. Additional work was
done in the areas of contention resolution for local area computer networks, signal detection
theory, data compression for image processing, and linear system theory.

Typically, the problem of estimation is concerned with attempting to approximate a
desired quantity by a function of the available data so as to minimize a prescribed fidelity
criterion. A commonplace example might be given by aitemniing to estimate a second order
random variable X (perhaps a signal of interest) by some function £( - ) of the datum Y
(perhaps a noise corrupted version of the signal) so as to minimize the mean square error
E([X - f(Y))2). This example appears in many works on the subject of estimation theory.
In earlier work, sponsored by a previous AFOSR Grant, we showed [1] that the best such
function is not necessarily given by f(Y) = E(X 1Y), even thought X and Y arc both
bounded random variables. Moreover, it might scem that there is little justification from a
practical viewpoint of choosing the mean square error as th» appropriate fidelity criterion.
Consider a fidelity criterion given by the expectation of a cost function of the error. In the
context of cstimation theory, one is often confronted with two concerns in choosing a cost
function: the concern that the cost function adequately reficcts the cost one wishes to attach
to an error, and the concern that the cost function results in a problem which one finds to be
mathematically tractable. A cursory inspection of the literature in estimation theory might
suggest that in many cascs the second of the above concerns totally eclipses the first
concern. We began a scrious study of estimation theory. This work was directed to the
very underpinnings of estimation theory, and it is represcatative of what in many cases in
the literature is ignored, is postulated with no corncern for the consistency of everything
being postulated, or is otherwise swept under the rug. The two such areas in which we
have achicved some success are concerned with continuity properties of filtrations of ©-
algebras generated by stochastic processes and with the convergence rate of the martingale
convergence thcorem. We will now briefly comment on our results in these areas.

Let (€2, ¥, P) be a probability space. We tale a filtration of o-algebras to be any
nondecreasing collection of o-subalgebras of ¥ indexed by [0, o). Let {F(:t20) bca




filtration. Define ¥ _ = ¥ ; otherwise, define F ¢ _ = vV Fgand F g = M Fs
s<t s>t

We say that a filtration is continuous at tif’ ¥, _ = %4 ; we say that it is left continuous at t

if F¢_=%¢;and we say that it is right continuous at tif F ;= . The filtration

{ F:t =0} is continuous, left continuous, or right continuous if it is continuous, left

continuous, or right continuous, respectively, at t forall t 2 0. Let {X(@): t € [0, o)} be a

stochastic process defined on (Q, F, P). By a P-null set we mean a measurable set which

has probability zero. The canonical filtration of this stochastic process is given by

Fi=0(X(s): s <t) V (P-null sets) fort 2 0.

In the context of estimation theory where the data are represented by a stochastic
process indexed by an interval of real numbers, much of the current literature is concerned
with stochastic differential equations and with martingale theory. Stochastic differential
equations often arise as models for stochastic dynamical systems end techniques from
martingale theory often arise in the analysis of estimation schemes and their approximation
propertics. In these arcas one often encounters hypotheses stipulating the right continuity
of filtrations of ¢-algebras generated by stochustic processes. This is a blanket assumption
madc by many in the French and Sovict schools of stochustic process theory; see, for
example, |2], [3], [4], and [5]. However, the question emerges as to when this
assumption is justified or as to what reasonable hypotheses might imply it. Itis often
tempting and pleasing to the intuition to believe that the regularity of the sample paths of a
stochastic process and the continuity of its associated caronical filtration are closely related.
For example, separable Brownian motion has almost surely continuous sample paths and
with the aid of the Blumenthal Zero-One Law |6] we sce that its canonical filtration is
continuous. Conversely, martingales with respect to right continuous filtrations have
versions that are aimost surely cadlag {7]. If we heuristically think of the canonical
filtration ¢ as the "data" conveyed by the stochastic process {X(:): t € |0, «)} up to and
including time t, we may be inclined to supposc that the continuity of the sample paths of
the process might prevent jumps in the "data” { ¢ : 1 2 0}; and we also might suppose that
the continuity of the "data” flow would influcnce the regularity of the sample paths of the
stochastic process. (In [1] we pointed out that this is a totally erroneous concept of data.)
In [R] we investigated what properties characterize {itrations of ¢-ulgebras that are
continuous. In this work we showed that the regularity of the sample paths of a stochastic
process and the continuity of its associated filtration are logically independent; we presented




an cxample of a stochastic process with infinitely differentiable sample paths and a
discontinuous canonical filtration and we also gave an example where a stochastic process
could have an arbitrarily irregularly prescribed sample path (e.g. non-Lebesgue
measurable) and a continuous canonical {iltration. We also presented an example of a
stochastic process whose canonical {iltration was discontinuous at every point. We then
went on and established conditions guaranteeing the continuity of a filiration of

o-algebras. Also, we presented necessary and sufficient conditions for a filtration of -
algebras to be continuous, right continuous, or left continuous. For example, we

established the following results in [8}:

Theorem: Let (Q, ¥, P) be a probability space and { F¢: 120} be a filtzation on
(Q, F, P) so that ¥ ( contains the P-null scts. Then the filtration is continuous at t, if and
only if forall Y € LZ(Q, F, P), the stochastic process defined by Yt =EY1F)t20,is

Ly continuous at t,.

Let (2, F, P) be a probability space. A o-subalgebra 4 of F is said to be
essentially countably generated if there exists a countable subset K of # so that
o(K) V (P-null scts) = A1V (P-null scts).

Theorem: Let M be a separable metric space and {X(1): t 2 0} be a stochastic
process taking values in M that is left or right continuous in probability. Then

o(X(t): t 2 0) is essentially countably generated.

Theorem: Let (Q, ¥, P) be a separable probubility space. Thenif {#:t20}isa
filtration on (2, F, ) so that ¥ (y contains the P-null scts, there exists a countable subset
Cof Rsothatforte C F_= F+=%.

Now we comment upon some of our recent resuits on martingales. Frequently, in
estimation theory one derives a sequence of estimators, say Y, and one desires to show
that as n—eo, Y, converges in an appropriate sense. A typical example arises in an attempt
to estimate a second order random variable X as a {unction of the available data, say
(Zy: n e N}, by choosing Y, =E(X 171,23, ...,2,). Inthis endeavor, the martingale
convergence theorem often surfaces as a usclul tool in establishing convergence.

However, in a practical circumstance, if one were interested in convergence and if n
corresponded to the progression of time, then the rate of convergence would also be of
concern. This would arise, for instance, if Y, represented the estimate after n samples of
data are taken and data is sampled at regularly spaced intervals. The key to establishing this




rate of convergence is intimately linked with the convergence rate of the martingale
convergence theorem. In [9] we examined the convergence rate of the martingale
convergence theorem, and we showed that this convergence can be nonunifonm and,
conscquently, arbitrarily slow. This result that the cenvergence rate of the martingale
convergence theorem can be arbitrarily slow Is important not oily from the obvious
practical viewpcint, but also from the vicwpoint of the mathematician, since the martingale
convergence theorem is onc of the key theorems of probubility theory.

Another aspect of the martingale convergence theorem which we investigated was
concerned with the use of the martingale convergence theorem in estimating a random
variable X. Let X be a sccond order random variable, and let {Z: n e N} be a sequence
of random variables representing data. Often one may attempt to estimate X based upon the
first n terms of the data sequence by E(X 1 Z1,Z, ..., Z;). In[10] we pointed out
some problems associated with an overly cavalier usage of the martingale convergence
theorem in this context. In particular, we gave an example where gach of the above random
variables was zero mean Gaussian with a positive variance, E( X 121,22, ..., Z,) =0
almost surely tor each n € N, and yet for any positive integer k there exists a function

fx:R—R so that fi,(Y)) = X pointwisc on the underlying probability space.

In a similar context as the above, 1n 111} we noted that for a second order random
variable X, the rate of the Ly convergence of E{X Y1, Y9, ..., Y ] can crucially depend

upon X. That is, any L, perturbation in X could drastically alter the rate of convergence.

Another aspect of estimation theory with which we were concerned dealt with the
idea of when an estimator which was optimal under a given fidelity criterion would also be
optimal under certain other fidelity criteria. A classical paper on this subject in [12] was
written by Sherman, and this result is known in the engincering literature as Sherman's
theorem. However, a close inspection of [12] shows sore erroneous claims. In [13] we
presented a correct derivation of the cffort undertaken in [12]. The following theorcm is a
correct version of Sherman's theorem and we proved it in [13].

Theorem: Letk e N, (£2, S, P) be a probability space, and X, Y1, ...,Yk be random
variables defined on (€2, S, P), with X integrable. Let M:RX = R be a Borel measurable
function such that MY j(w), .. SY ()] = E[XT Y, LY (w) as., and assume that
there exists a regular conditional distribution function of X conditioned on o(Y1,.. Yk
F:R x Q — [0,1], such that Fx+MLY (), .. Y} (w)],w), as a function of x with @

fixed, is unimodal about the origin and symmetric, Then MIYq, ..., Y] minimizes the




quantity E{®(X-{(Yy, . . .,Yy))] over all Borel measurable functions f:Rk - R where

O:R — [0, «) is even and nondecreasing on [0, o),

Several attempts at a proof of the above result have been presented in the engineering
literature, and each that we know of is wrong; counterexamples to these efforts are given in
[14].

Thus, the result in the above theorem requires @ regular conditional distribution
function that, when properly shifted, is symmetric and unimodal about the origin and a cost
function that is nonnegative, even, and nondccreasing to the right of the origin. Itis easy
to sce that if in this theorem we let k=1 and X and Y be mutually Gaussian random
variables then the resulting regular conditional distribution function 1s symmetric and
unimodal about E[X!Y |(w) for any fixed w. This special case explains why Sherman’s
theorem is often invoked to add a token claim of generclity to papers that only consider
Gaussian distributions. When one attempts to venture outside this somewhat limited arena,
however, the conditions which Theorem 1 places on the regular conditional distribution
function immediately begin to feel overly restrictive. After all, how comfortable should we
be with the assumption that the regular conditional distribution function under consideration
is unimodal about the conditional mean? The conditions on the cost function, on the other
hand, are extremely nonrestrictive and, in fact, allow for many interesting, albeit

impractical, choices. For example, the cost function given by
x|

)
DO(x) = _j Ic(h) dt,
0
where C denotes a Cantor subset of [0, o) of positive Lebesgue measure, satisfies the

conditions of the above thecorem. This imbalance suggests tlic possibility of lessening the
restrictions on the regular conditional distribution function by perhaps slightly increasing
the restrictions imposed on the cost function. In [14], we presented a more general
treatment of this general subject. The following results are presented in [14]. Notice that
the first result dispenses with the unimodality assumption, and the second result allows us
to base our estimate upon random variables measurable with respect to a non countably
generated o-algebra, such as, for instance, that which may be generated by a random
object.

Theorem: Letk € N, (€, S, P) be a probability space, and X, Yy, ..., Yk be random
variables defined on (£, S, P), with X integrable. Let M:2X 5 R be a Borel measurable
function such that MY (W), ..., Yi(w)] = E[X f Yl' o oY (W) as., and assume that

there exists a regular conditional distribution function of X conditioned on o(Yy, . . ., Yg),




F:R x Q — [0,1], such that F(x+M[Y (), . . ., Y (@)},w), as & Zunction of x with @
fixed, is symmetric. Then M|Yy, .. .,Y| ] minimizes the quantity EfOX-{(Yq, .. ., Y]

~

. <y K . .
over all Borel measurable functions f:R™ — R where @:20 — [0, o) 1s even and convex.

Theorem: Let (€2, S, P) be a nrobability spuce, A4 be a o—subalgebra of §, and X be a
random variable defined on (Q, S, P) such that X is integiable. For each w e Q, let

M(w) = E| XIA](w), and assume that there exists a regular conditional distribution function
of X conditioned on 4, F:R x Q — [0,1], such that F(x+M(w),w), as a function of x with
o fixed, is symmetric. Then M minimizes the cuantity E{(D(X—f{)] over all A-measurable

”~~
random variables X, where @:R — [0, o) 1s cven and convex.

In [15] and [ 16} our concern was directed woward tusing, or combining, estimates
based upon a finite number of estimates of a fixed second order random variable X in order
to achieve a single “best” estimate of X. For example, if X, Y, Yo, ..., Y, are random
variables and X is sccoud order, how might E[X 1Y}, EIX1Y5), ..., EIX 1Y ] be
combined so as to approximate X in a minimum mean square sense? Although aspects of
this problem have been considered in ihe literature, we know of no other work in this area
that is correct. To iffustrate some subtleties in this arca, note the following two examples.

Example: For an integer n > 1, consider a set of random variables {X, Y1,..., Yp} with
a joint probability density function given by

)

n n 2
+1 -1 —X* -y
1o = ol 32 o 2|1+ s e T bl
i=1

1=

It follows straightforwardly that the set {X, Yy, ..., Y,} is not mutually Gaussian and
not mutually independent, yet any proper subsetof {X, Y1, ..., Y} containing at least
two random variables is mutually independent, mutually Gaussian, and identically
distributed with cach random variable having zero mcan and unit variance. For any
nonempty proper subset Dof {Yq, ..., Y}, we note that EIX 1 D] = 0 a.s. since X is

independent of D. However, it follows quickly that

. . N )
EIX1Y],..., Yl = 2—‘};\(1- . Yncxp[—z—(YT+Y22+...+Y%)} as.

Thus, since any Borel measurable function of the estimates E[X | D} where D ranges over
all nonempty proper subscts of {Y1, ..., Yy} would be constant alinost surely, it would
not be reasonable to attempt to estimate E[X 1Y, ..., Y] based on a combination of

these estimates.
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Example: Let Q =10, 1], F denote the Borel subscts of Q, and P denote Lebesgue
measure on F. Let A be a positive real number, o(Y ) = ([0, 1/2)), 6{Y) =

o([1/4, 3/4)), and X(w) = A tor w e [0, 1/4) U [1/2, 3/4) and X(w) = —A for

we {1/4, 1/2) U [3/4, 1]. Then it straightforwardly follows that E[XIY ] = E[XIY,]=0
a.s., but E[XIY, Yol = X a.s. Notice that ia this special case, any linear combination of
E[X1Y ] and E[XIY 5] yields an estimate equal to 0 as., resulting in a mean square error in
approximating X of AZ, which can exceed any preassigned real number. Recalling that
E{XIY | ] and E[XIY5], respectively, arc o(Y 1)-measurable and 6(Yy)-measurable, we sce
that E[X1Y 1] = E[XIY 7] = 0 pointwisc in ; similarly, we sce that E[XIY{, Yo] = X
pointwise in . Thus, in this situation, it 1s {ruitless 1o attempt to approximate X based on
any function of E[XIY ;] and E[XIY5].

In [15] and [16] we proved the following theorem.

Theorem: Consider a probability space (€, !, ) and random veriables X, Ny, ..., N,
defined on (L2, #, P) where n is a positive integer and X is a seccond order random variable.
Further, assume that for each positive integer i < n, N; has a zero mean Gaussian
distribution with positive variance given by Giz, and that X, N, ..., Ny are mutually
indcpendent. Define Yi =X + Njfori=1,...,n. Then there exists a Borel

mcasurable function g:R"—R such that EIXIYy, .., Yl =gEIXIYy]), ..., E[XIYp))

a.S.

A Monte Carlo variance reduction technique known as importance sampling has
recently been applied 1o many problems in data communications. This technique holds the
nromise of offering vast improvements to traditional Monte Carlo methods. In {17] and
[18] we considered importance sampling applicd to thic estimation of tail probabilities. In
this work we gave counterexamples to some conunonly used types of importance
sampling. Then we introduced a new method of importance sampling, which we called
Importance Sampling via a Simulacrum, and we illustrated how it could outperform some
other methods of importance sampling.

In other papers we pointed out how wrong certain commonly accepted techniques
and results in statistical signal processing can be. In [19] we presented a collection of
countercxamples in detection and estimation. In [20] we presented a collection of
countercxamples in conditioning. In [21], we presented a collection of counterexamples in
maximum likclihood estimation. In [22] and |23} we presented some comments on some
problems in Kalman filtering. The papers noted in this paragraph provide scveral
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counterexamples to what is often taken as common knowledge in the literature of statistical
signal processing. A copy of [20] is appended to this ceport.

Another dircction of our rescarch efforts was in the area of contention resolution
for local area computer networks. In the last few years, packet broadcasting random
multiple-access computer communication networks have been commercially available. A
typical example of such a network is the Ethernet, developed by Xerox, which was
designed based on the idea of carricr sense multi ple access with collision detection. In
Ethernet, a station among a number of users shuring @ comimon channel will listen before
transmitting and defer it the channel 1s busy; when two or more staticins collide, each
colliding station waits for a random period of time before retrunsmitting. Alinough
Ethernet has the advantage of casy interconnection of stations to the common channel and it
provides a high level of utilization of the ~hannel, it does not truly address the problent of
how to effectively resolve collisions in the channel. Thus, a packet involved in a collision
may incur excessive delay due to waiting and abortion of transmission. Recently. a
protocol called Enct I was introduced [24] as a candidate for the second generation of
Ethernet. This protocol is designed to effectively resolve contention in a broadcast
multiple-access network such as Ethernet. We investigated the Enet I protocol in [25], and
in this investigation, we gave expressions for the average time required to resolv. a
collision involving k stations and the average time for a particular station involved in a k-
way collision to scnd its packet successtfully. Our results in this area were derived
analytically, without recourse to cfforts based on approximations or simulations. In [25]
we also considered the efficiency of the protocol, and we derived a lower bound for the

maximum cfficiency.

In the arca of image processing, a modest effort was directed toward studying the
propertics of a data compression scheme for image processing. In [26] we considered a
modification of an existing data compression scheme which allowed more general ways of
processing the image data while maintaining the favorable data compression rates.

We also devoted some cffort to the problem of signal detection. In [27] we
studied the problem of choosing the nonlincarity g( - ) when the test statistic was
constrained to be of the form

n

z g(xp),

=1

where the x;'s represented our observations. Observe that in the case of a constant signal
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additively corrupted by mutually inacpendent, identically distribuzed noise, the Neyman-
Pearson test statistic is of the above form. If the noise sequence were not mutually
independent, then the test statistic would not necessarily be of this form. However, it
might seem reasonable to suppose that in some cases, if the nnise were "almost muteally
independent” then a test statistic of the above form might be a reasonable approximation to
an appropriate test statistic. In [27] we studied the problem of choosing the function g( - )
so as to maximize the asymptotic relative efficicncy of this deiector relative to any other
detector of this form with a different nonlinearity.

In [28] we studied another aspect of statisticul hypothesis testing. Consider the
situation of testing one simple hypothesis against another simple hypothesis. The
likelihood ratio (i.c. a Radon-Nikodym derivative) often arises; and it is known that in
several contexts (e.g. Neyman-Pearson, Bayes, minimax) an optimum test is given by
comparing the likelihood ratio againut i appropriutely chosen threshold. In [28] we
studied the question of when a likelihood ratio with respect to two probability measures P
aind P might also be the likelihood ratio with respect to anoiher pair of probability
measures Qq and Q) on the same measurable spuce. In this way, one likelihood ratio
might iimplement an optimum processing of the data for many pairs of probability
measures; that is, an optimal data processor mighi be optimal even when different
probability measures are governing the data. For the moment, consider the case where Py
is absolutely continuous with respect to Py; we gave examples where the Radon-Nikodym

.. dP 0 . : .
derivative JITQ was the likelihood ratio not only for testing Pg) against Py, but also {or
testing Qq against Qy, cven when Py was extremely dissimilar from Qg and Py was

extremely dissimilar from Q.

In some recent efforts, v > have ivestigated some aspects of linear sysiems.
Although the subject of linear systems has truly matured as a research area, we have
uncovered some unappreciated aspects of the theory. In [29] (see also [30]) we
investigated the representation of linear systems. {n this work we established the following
result.

Theorem: Let € be a locally compact separable nictric space, ) be a o-finite measure on

B(L2) (where we use 2 - ) to denote the Borel subscts of a topological space), and A be a
Borel measure on a locally compact separable metric spiace W. Let

T:Llloc(Qv B(Q), u)—él,foc(w, B(W), &) be a positive, continuous, linear map. Then
there exists KiB(W) x © — {0, o] so that

(i) Forcach we €, K(-, m) is a regular Borel measure on BW).




(i1) Foreach E € B(W), K(E, - ) is measurable on Q.
(ii1) For cach A € B(€2) with t(A) < oo, the measure

J K( , ) d(w)

A
defined on (W) is regular and A-absolutely continuous.

(iv) T(H) =§Ii K(-, o)f*(w) du(w) -

~

d_ J -

K{-, o)f~(w) du(w)

an { H
Q

for f e LI(Q, B(Q), ), where by this notation, we mean the difference of the Radon-

Nikodym derivatives of the measures given by the integrals.

Convolution frequently arises in the siudy of linear systems. In [31] we
constructed two bounded, Lebesgue integrable, nowhere zero functions whose convolution
is identically zero. This phenomenon scems to have been overlooked by many working in
the area of linear systems. In particular, it dashes any hope of deconvolution in this
situation. Also, although it is well known that L1(R), equipped with the operations of

pointwise addition and convolution, is a commutative Banach algebra, this result shows
that this commutative Banach algebra Lj(R) is not an integral dorain. Indeed, it shows

much more than this, since there exist two nowdiere zero integrable functions whose
convolution is everywhere zero. In [32) we showed the analogous result for sequences.
That is, we showed that there exist two summable, nowhere zero sequences whose
convolution was identically zero.

This has been a brief survey of our accomplishments; more details can be found in
the indicated publications. These accomplishments further our understanding of many
aspects of estimation theory, of the performance of a contention resolution scheme for local
area computer nctworks, of data compression for image processing, of signal detection

theory, and of linear system theory.
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ABSTRACT

The concept of conditioning in probability theory forms
the basis for study in many areas of information sciences and
systems. Even so, the subject of conditioning is often
shrouded in heuristics, misunderstood, and misused. This
paper considers several aspects of conditioning with an
emphasis on applications and explores several consequences
of an overly cavalier approach to the oft neglected measure-
theoretic subtleties involved in this area.

L INTRODUCTION

Conditioning in probability theory is a widely recurring
concept in many areas of information sciences and systems.
For example, conditioning is central 10 many popular tech-
niques in applied probability and, in fact, lies at the heart of
many aspects of estimation theory. In spite of this wide-
spread popularity, the subject of conditioning is commonly
misunderstood and tools involving conditioning are fre-
quently misapplied. To rephrase Doob (35, p.v], condition-
ing is simply a branch of measure theory, and no attempt
should be made to sugarcoat this fact. Unfortunately, many
efforts at research have apparently been undertaken without
appropriate concern for the measure-theoretic subtleties
associated with the concept of conditioning. In this paper
we review several aspects of conditioning and make a mod-
st atiempt to suggest caveats which seem to have been
frequently overlooked by many in this area. Although sev-
eral of our results are well known to the specialist in measure
theory, they nevertheless seem to have been overlooked by
many working in information sciences and systems.

In what follows, for a topological space T, we will let
B (T) denote the family of Borel subsets of T. Also, we
recall that a subset of a set is said to be cocountable if its
complement is countable. Further, for a subset S, we will
let S€ denote the complement of S, and we will let Ig denote
the indicator function of S. In addition, we will let N denote
the set of positive integers, Q denote the set of rational num-
bers, and R denote the set of real numbers. Finally, fora
random variable X, 6(X) will denote the G-subalgebra
generated by X.

I1. SIGMA-ALGEBRAS

The topic of 6-algebras is basic to the subject of
conditioning since conditioning is conventionally taken with
respect to a G-algebra. In many cases the o-algebra of
interest is that generated by some randoim variables
representing data. Hence, in applications, it is common to
treat 0-algebras as somehow representing knowledge or
information associated with data. Consider the following
example from {2, pp.458-459) which shows that associating
c-algebras with knowledge, or information, as commonly
understood, can Iead to incorrect conclusions.

Gary L. Wise
Department of Electrical and Computer Engineering
and Department of Mathematics
The University of Texas at Austin
Austin, Texas 78712

Consider the probability space ([0, 1}, B ([0, 1]), A),
where A denotes Lebesgue measure on B ([0, 1]), and

consider the o-subalgebra G given by the family of all
subsets of [0, 1] which are either countable or cocountable.

Now, for B € B ({0, 1]), consider the conditional

probability P(B ! G). Since G contains all singletons {®},
and hence might be seen as being completely informative, an

overly cavalier investigator might suppose that P(B | G ) is
equal to Ig. In other words, one might rationalize that to
know the sets in G implies that one knows witself and hence
knows whether or not  is contained in B, leading to the

conclusion that P(B | §) should be one when w is contained

in B and zero otherwise. It follows trivially, however, from

the definition of conditional probability, that PB ! G ) =

P(B), except possibly off of a countable subset of {0, 1].
For another example, consider a probability space

(2, F, P). A commonly used model in estimation theory
involves the model of data as a filtration { #;;: ne N} of
o-subalgebras of #. Suppose that the G-algebra F is
separable; that is, suppose ¥ is generated by a countable
family of subsets of Q. Does it follow that F;, is separable
for each n? As the following example illustrates, G-sub-
algebras of separable o-algebras need not be separable.
Assume that Q = {0, 1] and F = B((0, 1]). Further, let
G be the o-subalgebra of ¥ given by the countable and
cocountable subsets of [0, 1]. Since F=0o((a,b):0<a<b
<1landabe Q)it follows that F is separable. Assume
now that G is also separable; that is, assume that G =
O(Ap: n € N) where A is a subset of [0, 1] for each n.

Since G contains only countable and cocountable subsets of
{0, 1], we may assume that A, is countable for each n. Let

oo
B = {_J Ap. and note that B is also a countable subset of

[, I]I.!—l-llencc, there exists a real number x in [0, 1] which is
not an element of B. Notice also that if D is the family of all
subsets of B and their complements, then Dis a g-sub-
algebra such that G D> o(Ap: n € N). But, D# G since
{x} isin Gbut notin D. This contradiction implies that G is
not separable even though it is a o-subalgebra of the
separable o-algebra 7.

Now, let (€2, F) be a measurable space, and let Pbe a
family of probability measures on (2, ). The triple
(2, F, P) is called a probability structure. If S is a 6-sub-
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algebra of ¥, we say that Sis sufficient if for each
F -measurable bounded real valued function f defined on €2,
there exists an .S -measurable bounded real valued function g

defined on £ such that J-fdP = jg dP for each A in Sand
A A
for all P in . That is, g is almost surely [P] equal to the

conditional expectation of f conditioned on § when P is the

relevant probability measure. Note that although g does not
depend on P, the set of P-measure zero might depend on P.
It might be tempting and pleasing to the intuition to suppose

that if S were a sufficient o-subalgebra, then any o-sub-

algebra of F which included S as a subset would also be
sufficient. The following example from [3] constructs a

nonsufficient o-subalgebra which includes a sufficient
o-subalgcebra.

Let Pdenote the family of probability measures P on
(R, B (R)) such that P(B) = P(-B) for any sct B in B (R)
where, for any subset B of R, we define -B =
{xe R:—xe B). LetA=(Be B(R):B=-B] and
note that A is a o-subalgebra of B (R). Further, Ais a

sufficient o-subalgebra since, given any bounded Borel
measurable function f, g(x) = (f(x) + f(-x))/2 is an

A-measurable function for which {f dP = |g dP for any
A A

Ae AandanyPe P

Suppose now that Z is a subset of R which contains 0
and for which Z = -Z. Also, define D=
{(BUA:Be B(R),BcZ, and A e 4}. A suraight-
forward examination shows that Dis a o-subalgebra of
B (R) which includes A

Assume that Dis a sufficient o-subalgebra and let fbe a
bounded Borel measurable function. Then there exists a

D -measurable function g for which J.f dP = j g dP for any
D D

De Dandany Pe P Letx € Z and note that {x} € D.

Choosing D = {x} above then implies that f(x)P({x}) =

g(x)P({x}) for any measure P in P. Now let x € Z€ and

note that {x,—x) e D, {x} ¢ D, and (—x} ¢ D. Letting D

= {x, —x) above implies that (f(x) + f(-x))P({x}) =

2g(x)P({x}) since P({x}) = P({—x}), by definition of P,

and g(x) = g(—x), since g is D -measurable. Given any

x € R, there exists a measure P in P for which P({x}) > 0.

Thus, we see that g(x) = f(x) if x € Z and g(x) =

(f(x) + f(—x))/2if x € ZC€. Letf(x)=-1ifx <Qand f(x) =1

if x 2 0. This choice.for f implies that g, as defined above,

is nonzero on Z and zero on Z€. Hence, we have that Z

= (g-1((0))}€ € D. Now choose a subset Zg, of R which

contains 0, is such that Z, = -Z,, and which is not an

clement of B (R). (Such scts abound.) Substituting Z, for

Z thus implies, based on the above discussion, that Zg € D.

But Z, cannot be in D since Z ¢ ‘B (R). This contradiction
implies that Dis not a sufficient o-subalgebra even though it
includes the sufficient g-subalgebra 4.

Filtrations of o-algebras play a prominent role in many
areas of conditioning. A common misconception concerning
filtrations regards the relationship between the regularity of
the sample paths of a random process and the continuity of
its canonical filtratdon. In (9] examplcs are given in which a
separable random process with a continuous filtration has
nonmeasurable sample paths, a random process with
infinitely differentiable sample paths has a discontinuous
canonical filtration, and a random process taking values in
[0, 1] has a canonical filtration which is everywhere
discontinuous.

III. CONDITIONAL PROBABILITY

Consider a subset H of the interval [0, 1] with the
properties that the outer Lebesgue measure of H is 1 and the
inner Lebesgue measure of H is 0. (For a construction of
such a set, the interested reader is referred to (8, pp.67-70].)

Further, let Q = [0, 1] and let A denote Lebesgue measure on
B([0, 1)). Define ¥ = ((HNB) U (HC N By): By, By

e ‘B([0, 11)) and note that Fis a o-algebra on £ and that
B([0, 1)) is a 6-subalgebra of F. Now, define a probability
measure P: F —[0, 1] on the measurable space (Q, F) via
P(H N B1) U HS A B2)) = A(B) + A(B2))/2 1o obtain a
probability space (Q, 7, P). (That P is well-defined follows
from the properties of H.)

Consider now this probability space (2, ¥, P). The
following example, adapted from {2, p.464, 33.13], shows
that conditional probabilities need not be measures.

Since P(H) = 1/2 and P(B) = A(B) for B € B ({0, 1])
implies that that P(H n B) = A(B)/2 = P(H)P(B), it follows
that H is independent of B ({0, 1]). Let Fbe a setin F with
probability zero and assume that P( - 1 B ([0, 1))}{w) is a
probability measure on F for each w outside of the null set
F. Note that there exists a collection {Ap: n e N} of
subsets of [0, 1] such that B ([0, 1)) = 6({Ap: n € N}) and
such that {Ay: n € N} is closed under finite intersections.
Define K = [w € Q: P(Aq 1 B([0, 1))w) =I5 () and

note that K € B([0, 1]) and P(Kp) = 1 forall n € N since

P(Ap | B([0, 1)) =1a, as. Now, letK = ﬁ K FC and
note that P(K) = 1. Further, note that the funcuon which,
for a fixed @ in K, maps an element B of B ([0, 1]) to Ig(w)
is a probability measure on B ([0, 1]) which agrees with
P(B | B([0, 1]))(w) whenever B € (Ap: n € N). Thus, the
Dynkin system theorem {1, p.169] implies that for w € K,
P(B [ B ([0, 1]))(») is uniquely determined to be Ig(w) for
any set B in B ({0, 1]). Thus, in particular, if w € K then
P({w) 1 B([0, 1]))(w) = 1. Now, recalling we assumed that
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P(- 1 B({0, 1]))(w) is a probability measure on ¥ for each w
outside of the null set F, we see that if w € HNK then

PH !B ({0, 1D)w)2P({w} ! B0, 1)){w) =1, and if

o € HCK then P(H | B ([0, 1)) {w) <

P({w}C I B ([0, 1]))(®) = 0. Thus, if w € K, then

P(H 1 B([0, 1)) (w) = Ij(w). ButHand B ([0, 1)) are
independent, and hence P(H | B ({0, 1])) =P(H) = 12 a.s.
This contradiction implies that P( - 1 B ([0, 1]))(w) is not

almost surely a probability measure on 7. Hence, a
conditional probability is not necessarily a measure.

A regular conditional probability allows one to sidestep
many of the undesirable aspects of conditional probability
since a regular conditional probability is by definition

required to be a measure for each fixed w € Q. Unfor-
tunately, however, regular conditional probabilities do not
always exist. In fact, the situation detailed above, in
addition to showing that a conditional probability need not be
a measure, also provides an example in which a regular
conditional probability docs not exist.

1V. CONDITIONAL INDEPENDENCE

The concept of conditional independence arises
frequently in many aspects of probability theory. For
example, the concept plays an important role in the study of
Markov processes. Unfortunately, misconceptions often
arise regarding the rclationship between conditional
independence and independence. As the following examples
adapted (with a correction) from [4, p.221] indicate, the
notions of independence and conditional independence taken

with respect to a nontrivial o-subalgebra are unrelated.

Consider a probability space (€2, ¥, P) and a G-sub-
algebra #of F. Further, let 4] and %4 be two families
each composed of elements from . The families 7{] and
% are said 10 be conditionally independent given # if
PAA1 N A1 H)=P(A] | H) P(Ay | #{) ass. for all
A € #) and Ay € 2. Further, two random variables X
and Y defined on (€2, F, P) are said 1o be conditionally
independent given #{ if o(X) and 6(Y) are conditionally
independent given J{

Let X and X3 be two independent identically distributed
random variables such that P(X| = 1) = P(X| =-1) = 1/2.
Further, let Z = X1 + X3, and let Aj = X;~1({1)) fori=1
and 2. In this case, P(Aj | Z) = 1/2 on Z-1({0}) fori =1 or
2,and P(A1 N Ay 1 Z) = 0on Z-1({0)). In particular,

P(A1 A2 1 Z) 2 P(A{ | Z) P(Ap | Z) on an event of positive
probability. Thus, the indepcendent random variables X1 and
X3 are not conditionally independent given 6(Z).

Consider now three mutually independent random
variables Y1, Y2, and Y3 such that each random variable

takes on only integer values and such that P(Y; =m) < 1 for
all integers m and fori =1, 2, 3. Further,IetS2 =Y + Y,
and $3 = Y1 + Y2 + Y3 and notice that Y} and S3 arc

dependent random variables. Let By = Sz‘l([i]) for each
integer i. There exists k such that By, has positive proba-
bility. On such a set By we have that P(Y1 =1,83=j152)
=P(Y1=1,82=k 83=j)/P(S§3=k)
=P(Y1=i)P(Yp=k-i)P(Y3=j-k)/P(S3=k)
=@P(Y1=1)P(Y2=k~i)/P(S2=k))P(Y3=j-k)
=(P(Y1=i,52=k)/P(S2=k)) P(Y3=j-k)
=P(Y1=ilS2)P(Y3=j-k)

=P(Y1=i182) (P(Y3=j-k)P(S2=k)/P(S2=k))
=P(Y)=il82) (P(S2 =k, 83=j)/P(S2=k))
=P(Yy=i182 )P(83 =j!S7). Thus, we conclude that
even though Y} and S3 are dependent random variables, Y

and S3 are conditionally independent given 6(S2).
V. CONDITIONAL EXPECTATION

Let X be an integrable random variable defined on the
probability space (Q2, 7, P), and let # be a 6-subalgebra of
¥. Then can the conditional expectation E[X | #{] be

expressed as J‘X dP(- | ), where P( - | #{) denotes
Q

conditional probability given #? The alert reader will
immediately give a negative response to this question, since,
recalling Section 111, P( - | ) might not be a measure and
hence the preceding integral might not even be defined.

The following example counters a common misconcep-
tion concerning versions of conditional expectations. In
particular, a random variable is given which is equal a.s. toa
conditional expectation yet is not a version of the conditional
expectation.

Consider the probability space consisting of [0, 1],

B ({0, 1]), and Lebesgue measure on B ({0, 1]}, and let G
denote the g-algebra consisting of the countable and
cocountable subsets of [0, 1]. Let X be the identity map on
{0, 1] and note that E[X { G ] = 1/2 a.s. Further, letY =

%( 1 -1¢) where C denotes the Cantor ternary set. Note that

Y =E[X!G]Jas., yet Y is not G -measurable (since Cis
neither countable nor cocountable) and hence is not a version
of EIX1G].

Another commonly occurring misconception regarding
conditional expectation is that it is a “smoothing” operator.
Consider, for example, a random process {X(1) :1 € R}
defined on a probability space (2, 7, P) and a o-subalgebra
Hof F. It has been argued by some (see for instance
several recent papers in the area of perturbation analysis) that
E[X(t) | H] is “smoother” than X(t) as a function of t. To
dispel this absurd notion simply let X(t) be an
H -measurable random process which is discontinuous
everywhere; the version of E[X(t) | #{] given by X(t)
obviously retains this same property.

Perhaps a little less obvious is the fact that, for a mandom
variable X on (Q, %, P) and a o-subalgebra G of 7,

E[X | G ] need not be as “smooth” a function of w as X.
Consider for instance the probability space given by the .
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interval [0, 1], the G-algebra G given by the countable and
cocountable subscts of {0, 1}, and Lebesgue measure on G.

If we let X = I, then a version of E[X | G ] is given by

1 - Ig where B equals the set of rationals in [0, 1). Hence,
even though X is everywhere continuous, there exists a
version of E[X | G ] which is everywhere discontinuous.

A commonly encountered property of conditional
expectation is the so~called nesting property. Unfortunately,
this property is sometimes misapplied. In this example,
from [6), it is shown that E{E[X | Y]] may exist even when
the expectation of X does not exist. In other words, before
calculating E{E[X | Y]] and claiming one has found the mean
of X, it is necessary to first ascertain that the mean of X
actually exists.

Consider random variables X and Y defined on ihe sume
probability space such that Y possesses a probability density
function iven b =L cxp(:y-’ 1y >0, and, for

g(y) given by g(y) Yars A2 y
eachy >0, Y is such that a conditional density function of X
given Y =y, denoted by f(xly), exists and is given by

—yx2
f(xly) = iy— cxp{ y2x );y>0and x € R. It follows

immediately that E[X | Y] = 0 a.s. and therefore E[E[X 1 Y]]
=0. Notice, however, that the mean of X docs not exist
since X has a Cauchy density h(x) given by h(x) =

J.f(xl yg(y)dy=—->L— forx e R.
4 Y) gly) dy T+ x2)

For another example, consider random variables X and
Y each defined on the same probability space (€2, F, P) and

a o-subalgebra Mof . Another commonly encountered
misconception concerning conditional expectation is that
E[X | M]and E[Y | #{] are independent if X and Y arc
independent. The following counterexample, which
[12, p.133] attributes 1o C. Sugahara, demonstrates that in
general this conclusion is false.

Let U and V be independent random variables, each

defined on the probability space (€2, 7, P), and each having
a zero mean, unit vanance Gaussian distribution. Define X
=U+VandY=U-~V,and note that X and Y arc
independent random variables each having a zero mean
Gaussian distribution with a variance of 2. Further,

E[X1o(U)]=E{U+VIoU)]=U+E[{VIicU)]=
U +E[V]=Uas., and E[Y | o(U)] =E[U -~V IoU)] =
U-E[VIo(U)] =U -E{V] = U a.s. Hence, any version of

E[X | 6(U)) and any version of E[ Y 1 6(U)]} are equal almost
surely to the same positive variance Gaussian random
variable and hence cannot be indcpendent. Further, we note
that even the ubiquitous Gaussian assumption docs not
alleviate this problem.

Fatou's lemma and uniform integrability are powerful
tools in analysis and are often relied upon in the area of
estimation theory. We recall that if a sequence of random
variables is uniformly integrable then almost sure
convergence implies convergence of the corresponding
expectations. Convergence of conditional expectations with

respect to an arbitrary G-subalgebra, however, does not
follow in general. The following example, adapted from
[16], describes a situation in which Fatou’s lemma docs not
hold and in which uniform integrability and almost sure

convergence do not imply that the corresponding conditional
cxpectations converge.

Let Q=0 1%, 1, let H={Bx(0,1:Be
B((0, 1))}, and note that #is a -algebraon Q. Letp
denote Lebesgue measure on B ((0, 1)), and let P denote
Lebesgue measure on B ((0, 1) x (0, 1)). For each positive
integer n, let By = (0, -},—), and let A, denote the n-th term in
the sequence (0, 1), (%, . © b d. %). (%. %), (}. 1),
©. b, & 1, . Note that (@, B0, ) x 0, 1)), P)is a

probability space, and that % is a o-subalgebra of
B0, 1) x (0, 1)). Now, for each positive integer n, define
arandom variable Xp(Xx, y) = S X, ¥). Let

(%, y) @y Anx By(x. ¥)

B e B((0, 1)), and note that

Xndp =
Bx(0, 1)

'—‘L‘IA x B 4P
BX(O, I)P(Bn) n n

=U(AgNB) = J. IAp x (0, 1) 4P, which thus implies
Bx(0, 1)

that E{Xp { ] =14, x (0, 1) 2s. Now, note that X 20

for each positive integer n, and that Xp, — 0 as n — . Note
also that, since E[IXyl] = t(Ap) — 0, the random variables
{Xq: n e N} are uniformly integrable. Further, note that

im I, x (0, 1) =1 and that lim IAnX(O. 1) =0. Thus,
n-——ee n—yoco

we see that, even though the random variables {Xg: ne N)
are uniformly integrable, Im E{X,1#)]=1as. and
n—oo
lim E(X,{#1=0as. In particular, Fatou's lemtna does

n—oo
not hold and the conditional expectations do not converge.

V1. REGRESSION FUNCTIONS

Given two random variables X and Y defined on the
same probability space, a common problem concems the
determination of the form of the regression function
E[X | Y=y]. For example, {13] considers this problem when
both X and Y are uniformly distributed. In this example, we
show that the existence of a joint probability density function
for X and Y in no way guarantees that the regression
function will obey any regularity property, other than Borel
measurability.

Let g:R — R be Borel measurable and define f(x,y) =
4lexp(-exp(|y|) Ix — g(y)D. Note that f(x,y) is a joint

probability density function since f J' f(x,y) dx dy
R R

= f f % exp(-exp(lyf) x — g(y)l) dx dy
RR
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= J J 4lcxp(_exp(|y|) lzt) dz dy = j %cxxv(—'yl) dy=1.
R R R

Let X and Y be random variables such that the pair
(X, Y) has a joint density function given by f(x, y). Notice
from the above calculation that a second marginal density of

f(x, y) is given by fy(y) = % exp(~lyl). Recalling that

EIX [ Y=y] = f x 209 4 and substituting for fy (y)

R YO
implies that E[X | Y=y]

=2 cxp(lyl)J‘ i—cxp(—cxp(lyl) Ix — g(y)l) dx
R

=2 exp(ly}) J (z+ gy i—cxp(—cxp(lyt) Izl) dz
R
= Iyl g(y) —— =g(y).
Zexpliy) 5(y) xplyD gy
Hence, the random variables X and Y with the joint density
function {(x, y) are such that E[X | Y=y] = g(y) where we

recall that g( - ) was an arbitrarily selected Borel measurable
functon.

VIIL. MEAN SQUARE ESTIMATION

One of the most common misconcenticns iu estimation
theory is that conditional capectaion minimizes mean square
crror. This mistaken concept arises in estimation and filter-
ing applications in engincering as well as in many L mini-
mization problems in probability and statistics. As the fol-
lowing example from [15] indicates, even for bounded ran-
dom variables, conditional expectation may not even come
close to minimizing the mean square error even though there
exists a function mapping the reals into the reals by which
the random variable of interest may be estimated precisely.

Consider the set H and the probability space (2, 7, P)
used in Section III. Let A denote Lebesgue measure on
‘B(l0, 1]). Further, let A be a fixed nonzero real number
and define two random variables X and Y on (Q, #, P) via
X(w) = w and Y(w) = A Ij{w). Notice that o(X) =
B([0, 1]) and that o(Y) = {Q, B, H, H®}. Further, since
P(H) = 1/2 and P(B) = A(B) for B € B ([0, 1]), we see that
P(H N B) = A(B)/2 = P(H)P(B), or that X is independent of
Y. Hence E[Y | X] = E[Y] = A/2 a.s. which implies that
E[(Y - E(Y  X])2] = E[(Y — A/2)2] = A2/4. But, Y() =
A Jg(X(w)) for all o € Q. Thus, E[(Y - A Ig(X))2] =0.
In other words, for this example there exists a function
f:R-R such that Y(w) = f{(X(w)) for all w € Q yet, by
choice of A, E[(Y — E[Y! X))2] could be arbitrarily large.

We note further that in this case o(Y) is finite, 6(X) contains
all singletons, and all moments of X and Y exist.

VIIL DISTRIBUTED ESTIMATION

Consider a random variable X and a sct of random
variables {Y1, ..., Yy} all defined on the same probability

space. A commoaly considered problem in the area of
distributed estimation is that of how to best fusz or combine

estimates of the form E[X | D], where D is a nonempty
proper subset of {Yy, ..., Yq}, in order to obtain a single
good estimate of E(X 1Y, ..., Yq]. In the following

example, from {7], a situation is described, using common
distributions, in which any such method of fusion is useless.

For a positive integer n greater than one, consider a set
of random variables {X, Y, ..., Yp} with a joint

probability density function given, as in [1 l].nby
(Ll 41 o ,
f(x, ¥1. -+ -5 ¥p) (m_)n cxp’:2 X +§%yf
1=

n 2

_x2 -y i

| 1+x exp(—z—) r]; (yi °XP(_2L . It follows straight-
i=

forwardly that the set {X, Y1,..., Ypn} is not mutually

Gaussian and not mutually independent, yet any proper
subset of {X, Y1,..., Y] containing at least two random

variables is mutually independent, mutually Gaussian, and
identically distributed with each random variable having zero

mean and unit variance. For any nonemipty proper subset D
of {Y{,..., Y}, wenote that E[X | D] = 0 a.s. since X is

independent of . However, that E[IX1Yj,..., Y]l =
i

55 Yi-+ Yn exp{%{Y% + Y% E Y%)] a.s. follows
casily. Thus, since any Borel measurable function of the
estimates E[X | D] where D ranges over all nonempty
proper subsets of {Y3,..., Yq) would be constant almost

surely, it would be absurd to attempt to estimate
E[X1Y],..., Yp] based on a combination of these esti-

mates. Once again, notice that the oft used and much abused
Gaussian assumption does not alleviate this difficulty.

IX. MARTINGALES

The subject of martingale theory is an important aspect of
conditioning which finds many applications in information
sciences and systems. The following example shows that a
martingale may have a constant positive mean, converge a.s.
to zero in finite time, and yet with positive probability exceed
any real number.

Let {X,: n e N} be a sequence of mutually independent
identically distributed random variables such that P(X} = 0)
= P(X1 =2)=1/2. Now, for each positive integer n,

define Y =X1X5 - - - Xj;, and note that {Yp:ne N} isa
martingale and that E[Yy] = 1 for all n € N. Further, notice

that not only does the sequence {Yp: n € N} converge
almost surely to zero, but with probability one, only & finite
number of terms of the sequence {Yp: n € N} are nonzero.
Even so, it follows easily that Y, exceeds any real value

with positive probability since P(Yp =20)>0foraline N.

Consider now the following example from [14) which
illustrates a pathology concerning the martingale conver-
gence theorem. In particular, it shows that in certain
circumstances the martingale convergence theorem might be
useless as an estimation technique.




Consider the probability space (R, B (R), P) where P
denotes zero mean, unit variance Gaussian measure on
(R, B(R)). Let Py denote the inner P measure on
(R, B(R)). Let S be a subset of R such that P.(S) = P«(8%)
= 0. (That such sets exist is shown in [14].) Further, let W/
= {(S " B) U (SN B3): By, By € B(R)} and note that
‘W is a o-algebra on R which includes B (R). Define a
probability measure y1 on (R, W) via
H((S M B1) U (S° A By)) = (P(B1)+P(B2))2. (That s
well-defined follows from the properties of S.) Note that the
restriction of u o B(R) is P.

Consider now the probability space (R, W, n). Note
first that § and S€ are each independent of B (R) since, for
any Bore} sct B, u(S N B) = p(B)/2 = 1(S) u(B) and
K(SC N B) = p(B)/2 = u(S°) u(B). Now define a random
variable X on (R, W, i) via X(x) = x Ig(x) ~ x Igc(x) and
notice that, for any Borel set B, u(X € B) =
H((S N B) U (S N {xe R:i-xe B})) = P(B) since P is

symmetric, Hence, X is a Gaussian random variable with
zero mean and unit variance. Funther, note that

E[X(x) | B(R)] = x E[ls(x) ~Igc(x} | B(R)] =
x EfIg(x) ~ Isc(x)] = 0 a.s. since the identity map is Borel
measurable, § and S€ are independent of B (R), and P(S) =
P(§€) = 172.

Now, let {Yi: k € NJ be any sequence of Borel
measurable functions mapping R into R. Note that
{Yk: k € N} is a sequence of random variables on

(R, ‘W, w). Consider the martingale
{Xk=E[X1Yy,...,Ygl:ke N}. Since, given any
ke N, B(R)includes (Y}, ..., Yy), it follows that Xy

=E[XIY}, ..., YKl =E[EXIBR)]1Yy,...,Yk]=0
a.s. using the previous result. Hence, the martingale
convergence theorem is completely useless in estimating the
random variable X in terms of the random variables

{Yk: k € N}. Furthermore, note that for any sequence

{sk: k € N} of positive real numbers, we could let Yi(x) =
sk X. In this case, the above phenomena is exhibited when

all of the random variables of concern are Gaussian. Finally,
we note that, yet again, the ubiquitous Gaussian assumption
does not protect us from this disturbing problem.

Another disturbing result conceming the martingale
convergence theorem is detailed in [10]. There it is shown
that the convergence rate guaranteed by the martingale con-
vergence theorem can be arbitrarily slow. This result con-
trasts with the previous example in which the convergence
was instantaneous, yet to the wrong random variable.

X. CONCLUSION

We hope these comments will be helpful to those using
conditioning as a tool in investigations. Although some of
these examples are undoubtedly well known to the specialist
in measure theory, as previously mentioned, our experience
indicates that these caveats have been overlooked by many

-6 -

working in the area of information sciences and systems. In
conclusion, if this paper serves no other purpose, we hope it
will serve as a reminder that conditioning can be a dangerous
tool in the hands of amateurs.
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